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ABSTRACT

An object-based verification methodology for the NSSL Experimental

Warn-on-Forecast System for ensembles (NEWS-e) has been developed and

applied to 32 cases between December 2015 and June 2017. NEWS-e fore-

cast objects of composite reflectivity and 30-minute rotation tracks of updraft

helicity are matched to corresponding objects in Multi-Radar Multi-Sensor

data on space and time scales typical of a National Weather Service warn-

ing. Object matching allows contingency table-based verification statistics to

be used to establish baseline performance metrics for NEWS-e thunderstorm

and mesocyclone forecasts.

NEWS-e critical Success Index (CSI) scores of reflectivity (updraft helic-

ity) forecasts decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 hours

of forecast time. CSI scores decrease through the forecast period, indicating

that errors have not saturated and skill is retained at 3 hours of forecast time.

Lower verification scores for rotation track forecasts are primarily a result of

a high frequency bias. Comparison of different system configurations used

in 2016 and 2017 show an increase in skill for 2017 reflectivity forecasts, at-

tributable mainly to improvements in the forecast initial condition. A small

decrease in skill in 2017 rotation track forecasts is likely a result of sample

differences between 2016 and 2017. Although large case-to-case variation is

present, evidence is found that NEWS-e forecast skill improves with increas-

ing object size and intensity, as well as in mesoscale environments in which

an enhanced or higher risk of severe thunderstorms was forecast.
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1. Introduction39

NOAA’s Warn-on-Forecast (WoF) project is tasked with producing probabilistic, short-term40

O(0–3 hr) guidance for thunderstorm hazards (Stensrud et al. 2009, 2013). In recent years, pro-41

totype WoF systems have demonstrated an ability to produce accurate ensemble forecasts in case42

studies of tornado-producing mesocyclones (e.g. Dawson et al. 2012; Yussouf et al. 2013, 2015;43

Supinie et al. 2017), severe hail (Snook et al. 2016; Labriola et al. 2017), and flash flooding (Yus-44

souf et al. 2016). One system, the NSSL Experimental Warn-on-Forecast System for ensembles45

(NEWS-e) has provided ensemble forecasts in real time during the springs of 2016–2017 (Wheat-46

ley et al. 2015; Jones et al. 2016). In 2016 and 2017, NEWS-e forecasts were issued up to 1747

times daily at 30-minute intervals for a 750 x 750 km domain where severe thunderstorms were48

expected. The large amount of forecast data produced during these real time cases makes subjec-49

tive verification, which has typically been employed for case studies, difficult and motivates the50

development of automated verification techniques for WoF guidance.51

Automating verification of WoF guidance for thunderstorm hazards presents several challenges.52

Firstly, forecasts are issued at convection-allowing scales, typically with v3 km horizontal grid53

spacing, which requires the use of spatial verification methods (e.g. Gilleland et al. 2009, 2010)54

to avoid double penalties in point verification metrics associated with small displacement errors55

(Wilks 2011). Secondly, WoF is interested in predicting localized, rare events occurring in con-56

vective storms. These events occur infrequently compared to quantities typically used in model57

verification, such as precipitation, even during widespread severe weather outbreaks (e.g. Yussouf58

et al. 2015). Finally, phenomena such as mesocyclones are not fully sampled by conventional59

observations, which requires development of verification datasets from imperfect proxies of thun-60
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derstorm hazards (Sobash et al. 2011; Skinner et al. 2016; Sobash et al. 2016a,b; Dawson et al.61

2017).62

Verification techniques based on object identification and matching (e.g. Davis et al. 2006a,b;63

Ebert and Gallus 2009) are appealing for overcoming the challenges associated with verification64

of WoF guidance. Object-based methods are designed to be applicable to non-continuous and non-65

traditional features of interest (Davis et al. 2006a). Additionally, object identification and matching66

algorithms are adaptable to a variety of user needs. For example, objects may be matched accord-67

ing to user-defined total interest values (Davis et al. 2006a,b) and objects derived from different68

input fields can be used in verification provided they are consistently defined to isolate features69

of interest (Wolff et al. 2014). Finally, object-based methods provide extensive diagnostic in-70

formation about forecast and observed objects, allowing specific error sources in forecasts to be71

quantified. These advantages have resulted in extensive use of object-based methods for verifica-72

tion of convection-allowing model forecasts. Recent examples include verification of quantitative73

precipitation estimates (Gallus 2010; Hitchens et al. 2012; Johnson and Wang 2012; Duda and74

Gallus 2013; Johnson and Wang 2013; Johnson et al. 2013; Clark et al. 2014; Schwartz et al.75

2017), as well as specific features in radar (Burghardt et al. 2014; Pinto et al. 2015; Cai and Du-76

mais 2015; Skinner et al. 2016; Sobash et al. 2016b; Burlingame et al. 2017; Jones et al. 2018),77

satellite (Griffin et al. 2017a,b), or damage (Clark et al. 2012, 2013; Stratman and Brewster 2017)78

proxies.79

A final complication specific to verification of WoF guidance is that accurate forecasts are80

needed on spatial and temporal scales typical of thunderstorm warning products issued by the81

National Weather Service. These small time and space scales limit the utility of local storm re-82

ports as a verification dataset (Sobash et al. 2011, 2016a,b) owing to errors in the timing, location,83

and reporting frequency of severe weather (e.g. Brooks et al. 2003; Doswell et al. 2005; Trapp84
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et al. 2006). In contrast, proxies from Doppler radar observations can be matched to model out-85

put with minimal errors in time and space. Additionally, radar data can be used to verify WoF86

forecasts in real time, which can be used to provide forecasters with rapidly-updating measures of87

forecast performance. These attributes make radar proxies an attractive option for verification of88

short-term forecasts of convective storm hazards (Yussouf et al. 2015; Skinner et al. 2016; Dawson89

et al. 2017).90

This study adapts the object-based mesocyclone verification methodology developed by Skinner91

et al. (2016) for application to NEWS-e reflectivity and mesocyclone forecasts during 20161 and92

2017. Verification statistics from 32 total cases are used to establish a baseline of skill for NEWS-e93

forecasts of general and severe thunderstorms. Beyond baseline verification statistics aggregated94

across all cases, forecast skill is compared for different cases, forecast initialization times, and95

object diagnostic properties in order to quantify system performance for differing storm modes96

and mesoscale environments. To the authors’ knowledge, this study is the first examination of97

the skill of Warn-on-Forecast guidance across many cases spanning a variety of storm modes and98

mesoscale environments.99

An object identification and matching strategy for NEWS-e general and severe thunderstorm100

forecasts is presented in section 2. Object-based verification metrics and diagnostic properties for101

2016 and 2017 NEWS-e composite reflectivity and rotation track forecasts are presented in section102

3, including comparisons between different cases, initialization times, and system configurations.103

Conclusions, limitations, and recommendations for future research are provided in section 4.104

1A single case from 23 December 2015 is run using the 2016 system configuration and is considered part of the 2016 dataset.
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2. Methodology105

a. Description of the Forecast Dataset106

The NEWS-e is an on-demand, ensemble data assimilation and prediction system nested within107

the High-Resolution Rapid Refresh Ensemble (HRRRE; Dowell et al. 2016). NEWS-e is com-108

prised of an ensemble of 36 WRF-ARW (Skamarock et al. 2008) members with diverse physical109

parameterizations (Table 1; Wheatley et al. 2015) run over a 750 x 750 km domain with 3-km hor-110

izontal grid spacing (Fig. 1). Analyses are initialized at 1800 UTC daily with initial and boundary111

conditions provided by the HRRRE (Fig. 2) and domain location determined through collabora-112

tion with the Storm Prediction Center or as part of the Hazardous Weather Testbed Spring Forecast113

Experiment (Kain et al. 2003; Gallo and Coauthors 2017). Following initialization, analyses are114

produced every 15 minutes via assimilation of satellite column integrated liquid or ice water path115

(Minnis and Coauthors 2011; Jones and Stensrud 2015; Jones et al. 2016), WSR-88D radar reflec-116

tivity and radial velocity data, and surface observations using an Ensemble Kalman Filter (EnKF)2.117

Beginning at 1900 UTC, 18-member forecasts with a duration of 180 (90) minutes are issued at118

the top (bottom) of each hour until 0300 UTC (Fig. 2).119

As both NEWS-e and HRRRE are experimental systems being actively developed, several con-120

figuration changes were introduced between 2016 and 2017 (Table 2). Differences can be divided121

into changes in model configuration, changes in HRRRE initial and boundary conditions, and122

changes in observation processing and assimilation. Model configuration changes from 2016 to123

2017 include an upgrade from WRF-ARW version 3.6.1 to 3.8.1 and changing the microphysi-124

cal parameterization from Thompson (Thompson et al. 2008) to NSSL 2-moment (Mansell et al.125

2The specific EnKF technique is the ensemble adjustment Kalman filter (Anderson 2001) included in the Data Assimilation Research Testbed

(DART; Anderson and Collins 2007; Anderson et al. 2009) software. For simplicity, the more general term EnKF is used for the remainder of this

manuscript.
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2010), which is expected to better represent storm-scale microphysical processes in supercells126

(Dawson et al. 2010, 2014). Changes to the HRRRE configuration include an expansion of the127

forecast domain (2017 version shown in Fig. 1), introduction of EnKF-based hourly assimila-128

tion of radar reflectivity data, and changes to the observation localization and posterior inflation129

methodologies (Ladwig et al. 2018). Additionally, 2017 initial conditions for NEWS-e were taken130

from a 1-hr, 36-member HRRRE forecast initialized at 1700 UTC that provided each NEWS-131

e analysis member with a unique initial condition. NEWS-e boundary conditions in 2017 were132

taken from a 9-member HRRRE forecast issued at 1500 UTC and repeated every 9th NEWS-e133

member. In 2016, NEWS-e initial and boundary conditions were provided by a 3-hr, 18-member134

HRRRE forecast initialized at 1500 UTC and identical initial and boundary conditions were used135

for 18 pairs of NEWS-e members. Ensemble spread across these member pairs was produced136

through diversity in the physics options (Table 1). Finally, assimilation of ASOS observations was137

performed for 2017 NEWS-e cases 15 minutes past the top of each hour and the methodology138

for creating Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016) super observations of radar139

reflectivity data was changed from nearest neighbor to Cressman (Cressman 1959) interpolation.140

Additional background and details of NEWS-e system configuration are available in Wheatley141

et al. (2015) and Jones et al. (2016).142

NEWS-e forecasts of composite reflectivity and updraft helicity (Kain et al. 2008) in the 2–5143

km and 0–2 km layers above ground level (AGL) are examined by this study. These products144

were selected to test NEWS-e skill in forecasting all thunderstorms (composite reflectivity) and145

severe thunderstorms (updraft helicity). Examination of updraft helicity calculated over different146

vertical layers is used to determine if NEWS-e can accurately identify storms producing low-level147

mesocyclones, which have been found to be the best proxy for tornado occurrence (Trapp et al.148

2005). Rotation tracks are used as a final mesocyclone forecast product and are calculated by149
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aggregating 30 minutes of updraft helicity output centered on each 5-minute NEWS-e forecast150

timestep.151

b. Description of the Verification Dataset152

Verification of NEWS-e forecasts require proxies for thunderstorm and mesocyclone occurrence153

to be derived from WSR-88D data. These proxies are developed using output from the MRMS154

system, which provides composite WSR-88D observations across the Continental United States in155

real time (Smith et al. 2016).156

As composite reflectivity observations are available through MRMS, they are an obvious choice157

for verification of NEWS-e composite reflectivity forecasts. However, even though the same field158

is available in both the forecast and verification datasets it is not an identical, “apples-to-apples”159

comparison. Differences between the simulated and observed composite reflectivity will arise160

through the model microphysical parameterization, radar sampling differences, and interpolation161

of radar data to the model grid. As a result of these differences, simulated and observed composite162

reflectivity are treated as different quantities in determining thresholds used for object identifica-163

tion (see Section 2c).164

The verification dataset for mesocyclone forecasts is developed using rotation tracks derived165

from MRMS azimuthal wind shear data (Miller et al. 2013). Specifically, maximum range-166

corrected MRMS cyclonic azimuthal wind shear (Smith and Elmore 2004; Newman et al. 2013;167

Mahalik et al. 2016) in the 0–2 km and 2–5 km layers AGL is calculated every 5 minutes over168

the NEWS-e domain. Following quality control and interpolation to the NEWS-e grid, these az-169

imuthal wind shear data are aggregated to produce 30-minute rotation tracks for verification of170

NEWS-e updraft helicity-based rotation tracks.171
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A challenge in using azimuthal wind shear rotation tracks as a verification dataset is that spurious172

observations for rarely occurring phenomena, such as mesocyclones, can have a large impact on173

verification metrics. Therefore, extensive quality control is applied to MRMS azimuthal wind174

shear fields to mitigate the impact of erroneous observations. Initial quality control is applied175

prior to calculation of azimuthal wind shear, with nonmeteorological returns removed by a neural176

net trained using polarimetric data (Lakshmanan et al. 2014). Radial velocity data are dealiased177

using a modified method of Jing and Weiner (1993) that incorporates near storm environment178

soundings from the RAP model. MRMS azimuthal wind shear is then calculated only where the179

quality controlled reflectivity is greater than 20 dBZ and blended onto a grid with 0.01◦ (2016) or180

0.005◦ (2017) latitude/longitude grid spacing. Interpolation of azimuthal wind shear data to the181

NEWS-e grid is performed using a Cressman analysis scheme with a 3-km radius of influence.182

To be included in the objective analysis, azimuthal wind shear data must be cyclonic3 and occur183

within 20 km of at least 8 MRMS composite reflectivity observations greater than 45 dBZ. At least184

four azimuthal wind shear observations must meet these criteria for the grid point to be retained185

in the final analysis. The criteria for being retained in the objective analysis of azimuthal wind186

shear field are more strict than past studies (Miller et al. 2013) and have been chosen to minimize187

spurious values in the output. Finally, regions less than 5-km or greater than 150-km from the188

nearest WSR-88D site are removed to mitigate range-related impacts.189

c. Object Identification190

The methodology for object identification in composite reflectivity or rotation track fields is191

adapted from the Method for Object-based Diagnostic Evaluation (MODE) software (Davis et al.192

3NEWS-e has produced qualitatively accurate mesoanticyclone forecasts (Jones and Nixon 2017); however, only mesocyclone forecasts are

considered by this study.
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2006a,b) available in the Model Evaluation Toolkit provided by the National Center for Atmo-193

spheric Research. Thunderstorms and mesocyclones are typically sparse, contiguous maxima in194

both forecast and observation fields, so simple intensity thresholds are used to define object bound-195

aries. However, defining these thresholds is complicated owing to differences in the forecast and196

verification fields. For example, values that best discriminate mesocyclones in azimuthal wind197

shear data will be different from the best discriminators in updraft helicity data. To define inten-198

sity thresholds that can consistently identify objects in different fields, we assume that a perfect199

forecast should produce an identical areal footprint in both forecast and verification fields. This200

assumption allows percentile thresholds (e.g. Mittermaier and Roberts 2010; Dawson et al. 2017)201

to be used for object identification.202

Percentile thresholds are determined using climatologies of forecast and verification fields203

(Sobash et al. 2016a). These climatologies are sensitive to changes in system configuration, so204

separate climatologies are constructed for 2016 and 2017 cases (Fig. 3). Each climatology is205

constructed by aggregating nonzero gridpoint values greater than the domain-wide 99th percentile206

from each timestep a NEWS-e forecast or interpolated MRMS field is available. These extreme207

percentile values are used to match thresholds in the forecast and verification fields. The 99.95th208

percentile value is chosen as a threshold for rotation track objects, which corresponds to 2–5 km209

updraft helicity and azimuthal wind shear values between 50 and 65 m2 s−2 and 0.0035 and 0.005210

s−1, respectively. These updraft helicity values are similar to intensity thresholds used for meso-211

cyclone identification in prior studies (e.g. Kain et al. 2008; Clark et al. 2012; Dawson et al.212

2017).213

Despite general similarities, clear differences in the climatologies of updraft helicity and az-214

imuthal wind shear are present between 2016 and 2017 (Fig. 3b, c). These differences are at-215

tributable to changes in model configuration and the relatively small sample of cases. As updraft216
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helicity is an integrated product of vertical velocity and vertical vorticity, it is sensitive to changes217

in the magnitude or alignment of the two input fields. Comparison of cases run using both Thomp-218

son and NSSL 2-moment microphysics has revealed that slightly higher values of updraft helicity219

are produced by the NSSL 2-moment scheme (not shown). However, comparison of highest SPC220

risk and reported tornadoes between 2016 and 2017 cases (Tables 3, 4) reveals that 2016 cases221

more often feature tornadic storms in favorable environments. Given the relatively small sam-222

ple of cases available, it is therefore likely that changes in the MRMS climatology are primarily223

attributable to variation in storm intensity between the years4.224

A composite reflectivity threshold of 45 dBZ is used for NEWS-e output for both 2016 and 2017225

and the MRMS threshold is set according to the corresponding percentile (Fig. 3a). As with rota-226

tion track output, variation in the composite reflectivity climatology is apparent between 2016 and227

2017. Though the MRMS climatology is slightly lower in 2017 than 2016, most of the differences228

between the two years are attributable to changes in NEWS-e configuration. Examination of verti-229

cal profiles of simulated reflectivity between cases run with both Thompson and NSSL 2-moment230

microphysics reveals that the Thompson scheme produces stronger values of simulated reflectivity231

above roughly 7 km (Lappin et al. 2018), resulting in much larger maximum NEWS-e composite232

reflectivity values in 2016 than 2017. While these differences are most pronounced for NEWS-e233

values above v50 dBZ, the MRMS percentile corresponding to 45 dBZ is similar for both 2016234

(99.292%) and 2017 (99.374%).235

The changes in climatologies from year to year illustrate difficulties in establishing an adaptable236

object identification methodology for proxy variables such as composite reflectivity or rotation237

tracks. The large number of tunable parameters, from quality control of observations through ob-238

4MRMS azimuthal wind shear were merged to a coarser grid in 2016 than 2017; however, differences attributable to MRMS grid spacing are

largely smoothed out during interpolation to the NEWS-e grid.
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ject identification and matching, are a limitation of object-based verification techniques. Thresh-239

olds used in object identification and matching in this study have been determined through trial and240

error and have been consistently applied in order to compare between different fields and system241

configurations. Changes to thresholds used for object identification result in different numerical242

values of verification metrics, but little qualitative change in comparisons between 2016 and 2017243

(see Appendix).244

Prior to matching forecast and verification objects, a final series of quality control measures245

are applied in order to minimize retention of spurious objects (Fig. 4). A size threshold of 100246

(144) km2 is applied to rotation track (composite reflectivity) objects. Additionally, rotation track247

objects are subjected to a continuity threshold of 15 minutes, which requires tracks to consist of248

input from at least 3 separate timesteps. Finally, objects with a minimum spatial displacement of249

less than 10 km are merged into a single object.250

d. Object Matching and Verification251

Objects in the forecast and verification fields, as well as their associated diagnostic properties,252

are extracted using the Scikit-image python library (Van der Walt et al. 2014). Forecast and veri-253

fication objects are then matched according to a total interest score (Davis et al. 2006a,b) adapted254

from Skinner et al. (2016) using the centroid and minimum spatial displacement and time dis-255

placement between object pairs as inputs:256

T I =


(
(cdmax−cd)

cdmax

)
+
(
(mdmax−md)

mdmax

)
2

((tmax − t)
tmax

)
(1)

where TI is the total interest score, cd the centroid distance between an object pair, md the mini-257

mum distance between an object pair, and t the time difference between an object pair. The max258

subscript indicates the maximum allowable threshold for object matching and is set to 40 km for259
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centroid and minimum distance and 25 minutes for time displacement. Total interest scores are260

calculated for each possible pair of forecast and verification objects, with matched pairs requiring261

a total interest score greater than 0.2, as in Skinner et al. (2016). In cases where multiple forecast262

objects are matched to a single verification object, only the forecast object with the highest total263

interest is retained as a match, other objects are reclassified as unmatched.264

Calculation of the total interest for this study uses fewer input properties than are typically used265

in MODE. This simplification is made possible by the generally sparse and contiguous objects in266

both forecast and verification fields, which allows representative object matching using a small267

number of input measures (Schwartz et al. 2017). The mean of the two measures of spatial dis-268

placement is used as a single input to the final total interest in order to allow matching of objects269

that may largely overlap but have centroid displacements greater than the allowable threshold,270

which often occurs for reflectivity objects associated with mesoscale convective systems. As with271

object identification thresholds, verification scores are sensitive to the maximum allowable offsets272

in space and time, but qualitative comparisons between datasets remain similar (see Appendix).273

Object matching allows matched object pairs to be classified as “hits”, unmatched forecast ob-274

jects as “false alarms”, and unmatched verification objects as “misses” (Fig. 4). These classifica-275

tions allow the contingency table-based probability of detection (POD), false alarm ratio (FAR),276

frequency bias (BIAS), and critical success index (CSI) to be used to quantify the skill of NEWS-277

e reflectivity and mesocyclone forecasts. Given that object matching does not produce a quantity278

analogous to correct negatives in the contingency table, verification metrics are limited to those279

that consider only hits, misses, and false alarms. Additionally, missed verification objects are280

calculated as the residual of the number of observed objects and number of matched forecast ob-281

jects at each timestep. This approach results in infrequent occurrences where observed objects are282

incorrectly classified owing to forecast objects matched across timesteps.283
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Beyond bulk contingency table verification measures, diagnostic features associated with ob-284

jects allow specific forecast errors to be identified (Wolff et al. 2014). Specifically, object area,285

maximum intensity, and centroid displacement are used in this study to identify variations in fore-286

cast skill for different storm modes and intensities and potential phase and storm motion biases,287

respectively.288

3. Object-Based Verification of NEWS-e Forecasts289

a. Comparison of 2016 and 2017 Composite Reflectivity Forecasts290

NEWS-e forecasts were produced for a total of 14 cases during 2016 and 18 cases during 2017291

across a variety of geographic locations, storm modes, and storm environments (Tables 3, 4).292

Variation in cases between years prevents direct comparison of the impacts of NEWS-e system293

configuration changes on forecast skill; however, bulk verification metrics for the two years can be294

qualitatively compared. Baselines of NEWS-e composite reflectivity forecast skill for 2016 and295

2017 have been produced by aggregating all object hits, misses, and false alarms from each case296

and ensemble member, then calculating the POD, FAR, BIAS, and CSI at each available forecast297

time (Fig. 5).298

The ability of rapidly-cycling assimilation of radar and satellite data to accurately initialize299

individual thunderstorms is evident in the verification metrics as a high probability of detection300

and low false alarm ratio in NEWS-e composite reflectivity forecasts (Fig. 5a, c). NEWS-e POD301

20 minutes into the forecast is over 0.7 (0.8) for 2017 (2016), with corresponding false alarm ratios302

of approximately 0.4 for both years. This initial skill decreases with increasing forecast time, but303

does not level off before the end of the forecast period, indicating that forecast errors do not304
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saturate and skill is retained through 3 hours. The POD remains above the FAR for approximately305

75 minutes of forecast time for both 2016 and 2017.306

Despite the generally skillful composite reflectivity forecasts for both years, clear differences307

are apparent between 2016 and 2017 (Fig. 5). A positive bias is present during the first forecast308

hour for both years, but is more pronounced in 2016 forecasts. This positive bias in 2016 forecasts309

results in a higher POD during the first 30 forecast minutes, but 2017 forecasts have a higher POD310

for all following times after biases between the years become similar. Furthermore, 2017 forecasts311

have a lower false alarm ratio through the duration of the forecast, which combined with the higher312

POD at later forecast times, results in higher CSI scores at all forecast times.313

Examples of the composite reflectivity object distribution from a single forecast with similar314

CSI scores to the 2017 ensemble mean are provided in Figure 6. These “paintball” plots illustrate315

the accuracy of a NEWS-e reflectivity forecast with CSI scores similar to the yearly mean, with316

most ensemble members correctly predicting the position of thunderstorms within a developing317

MCS along the Missouri and Arkansas border. In this example, most of the forecast error is driven318

by missed objects along the western extent of the domain in eastern Oklahoma. Although some319

ensemble members correctly predict the location of these thunderstorms, many do not, particu-320

larly for developing convection during the second hour of the forecast (Fig. 6c, d). Several false321

alarm objects are also present, mainly in southern Missouri and southeastern Oklahoma; however,322

these false alarm objects occur in only a few ensemble members, resulting in low ensemble mean323

false alarm ratios. Finally, phase errors are apparent in the forecast of the MCS along the eastern324

Missouri and Arkansas borders, with NEWS-e predictions lagging the observed evolution 2 hours325

into the forecast (Fig. 6d). Despite these phase errors, many of the ensemble member objects are326

classified as matches owing to minimum and centroid distance displacements lower than the pre-327

scribed thresholds. This example was selected to illustrate what a NEWS-e forecast that produces328
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CSI values roughly similar to the 2017 mean can look like. Many combinations of POD, FAR,329

and BIAS can produce similar CSI values and variation is observed across different cases (Fig. 7),330

forecasts within a single case, or within the evolution of a single forecast5.331

Case-to-case variation in skill, as well as differences between 2016 and 2017 NEWS-e com-332

posite reflectivity forecasts, are apparent comparing performance diagrams (Roebber 2009) 60-333

minutes into the forecast of each available case (Fig. 7). With the exception of one outlier, 2017334

cases are more clustered, with ensemble mean CSI and frequency values between roughly 0.3–0.6335

and 0.75–1.5, respectively. The one outlier case, 2 May 2017, featured isolated storms that initi-336

ated after 0100 UTC, resulting in the fewest forecast and observed reflectivity objects from either337

year. In contrast, more case-to-case variation is present in 2016 forecasts, with CSI and BIAS338

values of approximately 0.2–0.5 and 0.5–2.0, respectively.339

Changes in NEWS-e performance for different storm modes and environments is examined by340

categorizing each case according to the maximum SPC 1630 UTC Day 1 categorical risk within341

the NEWS-e domain and subjectively-determined primary storm mode (Tables 3, 4). There is342

evidence of stratification of composite reflectivity CSI scores by SPC categorical risk in 2017343

forecasts, where an Enhanced risk or higher was present for 6 of the highest 9 scoring cases and344

a Slight risk or lower for 7 of the lowest 9 scoring cases. Similar stratification is not apparent for345

2016 cases, though the distribution is heavily weighted towards cases with Enhanced risk or higher.346

No clear differences in skill are apparent between cases classified as supercellular or mixed/linear347

storm mode in either 2016 or 2017.348

Temporal variation in NEWS-e composite reflectivity forecasts is examined by aggregating ob-349

jects across cases for each hourly forecast initialization time (Fig. 8). A decrease in BIAS and350

5At the time of writing, NEWS-e forecast graphics and verification statistics from each case are archived at

www.nssl.noaa.gov/projects/wof/news-e/images.php.
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FAR with increasing forecast initialization time is evident in both 2016 and 2017 cases. These351

decreases are coupled with a decrease in POD at later initialization times; however, this decrease352

is smaller than decreases in FAR, resulting in a net increase in CSI. These changes with forecast353

initialization time likely arise in part from repeated cycles of data assimilation producing more354

accurate analyses of existing thunderstorms and suppressing spurious convection. Initiation of355

additional convection, which will take several data assimilation cycles to be accurately analyzed356

by NEWS-e (e.g. Yussouf and Stensrud 2010) likely contributes to the decrease in POD with357

increasing forecast initialization time.358

Though variation between 2016 and 2017 verification metrics is present for all different initial-359

ization times, the largest differences are for forecasts initialized at 2000 and 2100 UTC (Fig. 8).360

The CSI of 2017 forecasts at these times is notably higher, at times greater than 0.1, than 2016361

forecasts. We surmise that this improvement is likely primarily attributable to upgrades in the362

HRRRE between 2016 and 2017, which include hourly ensemble assimilation of radar reflectivity363

observations and alterations to the observation localization and posterior inflation methodologies364

(Ladwig et al. 2018). These improvements provide NEWS-e forecasts with an improved storm365

and mesoscale initial condition that translates to improved NEWS-e performance for early fore-366

cast periods.367

Beyond changes in skill during earlier forecasts, 2016 composite reflectivity forecasts generally368

have a higher frequency bias than 2017 forecasts, particularly early in the forecast period (Fig. 8).369

This positive bias is additionally evident in bulk (Fig. 5) and case-to-case (Fig. 7) comparisons of370

2016 and 2017 forecasts and is primarily a function of different microphysical parameterizations371

utilized in 2016 and 2017 (Table 2). The sensitivity of frequency bias to microphysical parameter-372

ization is demonstrated by reproducing six cases from 2017 with an identical configuration except373
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that Thompson6 microphysics is used in place of the NSSL 2-Moment scheme. Cases re-run with374

Thompson microphysics all exhibit higher frequency biases in 60-minute composite reflectivity375

forecasts than those run with NSSL 2-Moment (Fig. 9). Despite the consistent differences in376

frequency bias, compensating variations in POD and success ratio (1 - FAR) occur between the377

two sets of experiments, resulting in small and variable changes to the CSI. Composite reflectivity378

objects are identified in Thompson experiments using the 2016 NEWS-e reflectivity climatology379

(Fig. 3). Since only cases from 2017 were compared, biases will be impacted by differences in380

the observed reflectivity climatology between 2016 and 2017. However, the increase in frequency381

bias for Thompson runs is exacerbated if either the 2016 or 2017 climatology is applied to both382

sets of experiments (not shown) and the results match subjective member-by-member comparisons383

between the two sets of experiments, providing confidence that the two schemes produce differing384

biases of thunderstorm coverage.385

b. Comparison of 2016 and 2017 Updraft Helicity Forecasts386

In general, object-based verification scores are lower for mesocyclone forecasts than reflectivity387

forecasts (Figs. 10, 11). The CSI for NEWS-e 2–5 km updraft helicity rotation track forecasts388

decreases from approximately 0.35–0.45 to 0.2 over the course of a 3 hour forecast during both389

2016 and 2017, a reduction of about 0.1 from CSI scores for composite reflectivity forecasts390

(Fig. 5). This reduction in CSI is primarily driven by a higher FAR in updraft helicity forecasts391

and corresponds to a small positive frequency bias at all forecast times. The positive frequency392

bias and increased FAR for 2–5 km rotation track objects indicate that NEWS-e overpredicted393

midlevel mesocyclone development in thunderstorms in both 2016 and 2017, especially given394

6An updated, aerosol aware version of the Thompson scheme (Thompson and Eidhammer 2014) was used for these experiments, which is

different than the version used for 2016 cases. The impact of changes within the Thompson scheme on NEWS-e forecasts is not known and beyond

the scope of this paper.
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nearly unbiased reflectivity forecasts following the first forecast hour (Fig. 5). Despite generally395

lower scores than reflectivity forecasts, the CSI of rotation track forecasts decreases through the396

entirety of the 3-hour forecast, suggesting that forecast errors do not saturate and NEWS-e retains397

skill through the period.398

Verification scores for NEWS-e 0–2 km updraft helicity forecasts are generally similar, although399

slightly lower, than scores for 2–5 km updraft helicity forecasts (Fig. 11). The number of rota-400

tion track objects in the 0–2 km layer is about 5% (20%) lower in 2017 (2016), resulting in a401

smaller overprediction bias and reduced POD and FAR. Though fewer low-level rotation track402

objects are identified, the strong similarities in verification scores suggest that NEWS-e forecasts403

are generally not discriminating between low- and midlevel mesocyclone development. This lack404

of discrimination is consistent with prior studies that have found that horizontal grid spacing of 1405

km or less is needed to resolve storm-scale processes responsible for low-level mesocyclogenesis406

(e.g. Potvin and Flora 2015).407

NEWS-e 2–5 km updraft helicity forecasts performed slightly better in 2016 than 2017 during408

the first hour of the forecast (Fig. 10), exhibiting both a higher probability of detection and lower409

false alarm ratio. However, there is large case-to-case variability in forecast performance at 60-410

minutes for both 2016 and 2017 (Fig. 12), with CSI and BIAS values ranging from less than 0.1411

to greater than 0.4 and roughly 0.25 to greater than 4.0, respectively. Though consistent variation412

of forecast skill in different storm modes and environments is not apparent, there is evidence that413

supercell cases in a favorable environment most reliably produce high verification scores. For414

example, 11 of the 14 highest-scoring cases across both years (roughly equivalent to cases with415

CSI greater than 0.35) are from days with Enhanced or greater risk. Furthermore, 5 of the 8416

supercell days with enhanced risk or greater are among the 14 highest-scoring cases, including417

cases that produced significant tornadoes on 9 May 2016, 24 May 2016, 16 May 2017, and 18418
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May 2017. The higher proportion of supercell cases in a favorable environment in 2016 than 2017419

indicates that sample differences7 may contribute to the improved performance in the first hour of420

2016 forecasts.421

Comparison of 2–5 km rotation track forecast verification metrics from the 6 cases reproduced422

using Thompson microphysics (Fig. 13) further suggests variation in skill between 2016 and 2017423

forecasts is attributable to sampling differences. Changing the microphysical parameterization424

results in small, inconsistent changes to POD, FAR, BIAS, and CSI across the 6 cases. Further-425

more, using the 2016 climatological threshold for object identification results in poor scores and426

large positive biases greater than 2.0 for all 6 cases, regardless of microphysical parameterization.427

This reduction in skill using the 2016 climatology confirms that changes in the updraft helicity428

climatology between 2016 and 2017 are primarily driven by differences in the observations, as429

opposed to changes in the composite reflectivity climatology, which are primarily driven by the430

microphysical parameterization (Figs. 3, 9).431

In addition to case-to-case variation in verification scores for rotation track forecasts, some cases432

exhibit large differences between performance of composite reflectivity and 2–5 km updraft he-433

licity forecasts (cf. Figs. 7, 12). In these cases NEWS-e produces generally accurate predictions434

of composite reflectivity objects, but less skillful predictions of rotation tracks. Many cases with435

the largest reductions in CSI (greater than 0.2) in updraft helicity forecasts are characterized by436

predominantly mixed-mode or linear convection, and include 31 March 2016, 3 May 2017, 11437

May 2017, 17 May 2017, and 23 May 2017. The reduced performance in rotation track fore-438

casts in these cases is typically attributable to either underforecasts of mesocyclones embedded in439

7Though large samples of individual forecast objects are available, many of these objects will be highly correlated owing to the ensemble and

high frequency forecast output in NEWS-e. Therefore, sample diversity is better represented by the number of different cases rather than the total

number of objects.
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mesoscale convective systems or overforecasts of mesocyclones in cellular convection. Examples440

of the two error sources are provided in Fig. 14, where, despite accurate composite reflectivity441

forecasts, most ensemble members miss mesocyclone development within an MCS in Iowa (Fig.442

14b) or dramatically overpredict mesocyclone development within mixed-mode storms in Texas443

(Fig. 14d).444

Similarly to composite reflectivity forecasts, cycled data assimilation results in a reduction of445

the BIAS and FAR, and increase in CSI with later forecast initialization times in mesocyclone446

forecasts (Fig. 15). Differences between 2016 and 2017 are inconsistent and at times highly vari-447

able across successive forecasts. However, it appears that 2017 CSI is improved in the 2000 and448

2100 UTC forecasts, though to a lesser extent than composite reflectivity forecasts. Additionally,449

CSI scores for 2016 are higher during the first 30–90 minutes of each forecast from 2200 UTC450

onward, indicating the improved skill in the first hour of bulk comparisons (Fig. 10) is consistent451

across most initialization times. Finally, 2016 forecasts initialized at 0200 UTC perform much452

better than 2017 forecasts. This improvement is not present in 0200 UTC reflectivity forecasts453

(Fig. 8) and the reasons for the improvement are not clear. However, 4 of the 14 cases from 2016454

did not issue forecasts at 0200 UTC (Table 3), which results in far fewer rotation track objects in455

2016 than 2017 and will amplify sampling differences between the years.456

c. Comparison of Object Diagnostic Properties between 2016 and 2017457

Variation of NEWS-e performance with storm characteristics is examined by comparing dif-458

ferences between the size and maximum intensity of matched and false alarm forecast objects.459

Differences between these diagnostic properties are visualized using scatterplots of composite460

reflectivity and rotation track objects aggregated from 60-minute NEWS-e forecasts (Fig. 16).461

Kernel density estimation (KDE) is then used similarly to Anderson-Frey et al. (2016) to highlight462
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regions within the size and maximum intensity parameter space where object properties occur463

most often. The KDE technique implemented here applies a Gaussian kernel with a smoothing464

bandwidth determined from a general optimization algorithm (Scott 1992) to each point within the465

parameter space. Kernels for each point are summed to provide a measure of the density of points466

and quantify differences between the distribution of false alarm and matched objects.467

Comparison of the size and maximum intensity of NEWS-e reflectivity objects reveal that larger468

and more intense objects were more likely to be matched to observations in both 2016 and 2017469

forecasts (Fig. 16a, b). This result is unsurprising as larger thunderstorms will be better resolved470

by the 3-km grid spacing employed by NEWS-e and more Doppler radar and satellite observations471

will be available for assimilation, likely resulting in a more accurate ensemble analysis. In addi-472

tion to differences between the size and intensity of matched and false alarm objects, differences473

between the object characteristics in 2016 and 2017 are apparent. As in the model climatologies474

(Fig. 3), much higher maximum composite reflectivity values are produced by the Thompson mi-475

crophysical parameterization, with the strongest storms exhibiting values between 70 and 76 dBZ,476

compared to 58–64 dBZ in NSSL 2-Moment forecasts. Additionally, a small secondary peak in477

the 2017 object maximum intensity distribution is apparent at roughly 46 dBZ (Fig. 16b). This478

peak is produced by misidentified objects within the stratiform region of mesoscale convective479

systems. These spurious objects represent less than 5% of the total number of reflectivity objects480

in 60-minute forecasts and will minimally impact verification scores, but their presence in NSSL481

2-Moment forecasts provides another example of challenges in identifying appropriate thresholds482

for object-based comparison of different system configurations.483

Similarly to reflectivity objects, larger and more intense rotation track objects were more likely484

to be matched in 2016 forecasts (Fig. 16c), but smaller differences between the distribution of485

matched and false alarm objects are present in 2017 forecasts (Fig. 16d). However, if 2017486
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cases are split according to the subjectively defined primary storm mode (Table 4), supercell cases487

behave similarly to 2016 forecasts, with larger and more intense objects being more likely to488

be matched to observations (Fig. 16e). In addition, the ratio of matched to false alarm objects489

in supercell cases from 2017 is higher than for mixed or linear storm modes and similar to the490

ratio from 2016 cases. This apparent dependence of performance on storm mode provides further491

evidence that the increased skill during the first hour of updraft helicity forecasts during 2016 is a492

product of sampling differences between the years rather than changes in model configuration.493

Finally, centroid displacement in matched objects is examined to identify potential positive494

storm motion biases, which have been noted in previous prototype WoF forecasts (Yussouf et al.495

2013; Wheatley et al. 2015; Yussouf et al. 2015; Skinner et al. 2016). In contrast with prior studies496

that found consistent, positive biases in storm speed for forecasts of discrete supercells, large vari-497

ation in the centroid displacement of matched objects is present in 30-minute NEWS-e forecasts of498

composite reflectivity and updraft helicity (Fig. 17). Much of this variation results from inclusion499

of several cases with varying storm modes and coverage. Despite the larger total variation in cen-500

troid displacement, north and eastward biases in centroid displacement, consistent with a positive501

bias in storm speed, are present in 2016 reflectivity forecasts and updraft helicity forecasts from502

both 2016 and 2017. Though this apparent storm motion bias is consistent with past results and503

subjective assessment of NEWS-e forecasts, centroid displacement biases can also arise through504

differences in simulated storm structure (Potvin et al. 2018). For example, changes to reflectivity505

or rotation track object size with different physical parameterizations will induce changes to object506

centroid positions and displacement from an observed object. As variation in the distribution of507

object sizes is noted between 2016 and 2017 for both reflectivity and rotation track objects (Fig.508

14), it is unclear to what extent biases in centroid displacement are attributable to errors in storm509

motion or storm and rotation track structure.510
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4. Conclusions and Future Work511

An object-based strategy for verifying Warn-on-Forecast guidance has been presented and ap-512

plied to 32 cases from 2016 and 2017. Composite reflectivity and updraft helicity-based rotation513

track forecasts from the NSSL Experimental Warn-on-Forecast System for ensembles are veri-514

fied against corresponding observations in Multi-Radar Multi-Sensor products on time and space515

scales typical of National Weather Service warnings. Forecast and verification objects are classi-516

fied as matched pairs, false alarms, and misses (Fig. 4) allowing contingency table-based metrics517

to be used to establish a baseline of WoF performance for general and severe thunderstorms. Bulk518

verification scores from NEWS-e forecasts support the following conclusions:519

• Percentile thresholds derived from model climatologies provide a method for prescribing520

appropriate object identification thresholds to different forecast and verification fields; for521

example, rotation tracks derived from predicted updraft helicity and observed azimuthal wind522

shear (Fig. 3).523

• Cycled assimilation of Doppler radar and satellite cloud liquid water path observations every524

15 minutes will accurately initialize individual thunderstorms within the NEWS-e domain,525

resulting in POD values greater than 0.7 and FAR values below 0.4 in NEWS-e 30-minute526

forecasts of composite reflectivity (Fig. 5).527

• Critical Success Index scores of NEWS-e composite reflectivity and updraft helicity forecasts528

decrease through the entirety of 3 hours of forecast time, indicating that forecast errors do not529

saturate and some skill is retained through the forecast period (Figs. 5, 10).530

• NEWS-e composite reflectivity forecasts are more accurate than updraft helicity forecasts,531

with CSI scores v0.1 higher throughout the forecast period. This reduced performance in532
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updraft helicity forecasts is primarily a result of overforecasting mesocyclone occurrence533

(Fig. 10)534

• Little difference in NEWS-e forecast skill is evident when considering updraft helicity in the535

0–2 km or 2–5 km vertical layers (Figs. 10, 11), indicating that NEWS-e horizontal grid536

spacing is too coarse to resolve storm-scale processes responsible for development of low-537

level mesocyclones.538

Additionally, the following differences are observed between varying system configurations, storm539

modes, and storm environments:540

• Improvement in composite reflectivity forecasts was noted from 2016 to 2017 and primarily541

driven by a lower FAR (Fig. 5). The improved performance is attributable to upgrades to the542

HRRRE, which provides a more accurate initial condition to NEWS-e and results in more543

accurate early forecasts (Fig. 8) and to implementing the NSSL 2-Moment microphysical544

parameterization, which reduces a positive frequency bias during the first hour of forecasts545

(Fig. 9).546

• Updraft helicity forecasts during 2016 are more accurate than in 2017 during the first hour of547

forecast time, with a higher POD and lower FAR (Fig. 10). Inconsistent changes in CSI for548

2017 cases rerun with Thompson microphysics (Fig. 13), and a similar skill to 2016 forecasts549

in 2017 cases with a primarily cellular storm mode (Fig. 16), suggest that improvements in550

2016 forecasts are driven by sampling differences between the two years.551

• There is tentative evidence that NEWS-e forecasts perform better for larger, more intense552

storms in favorable environments. The majority of composite reflectivity and updraft helicity553

cases with the highest CSI contain regions within an Enhanced or higher severe thunderstorm554
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risk in the 1630 UTC SPC Day 1 Convective Outlook (Figs. 7, 12). Additionally, larger555

and more intense reflectivity and rotation track objects are more likely to be matched to556

observations (Fig. 16).557

This study has demonstrated the utility of object-based verification for providing a bulk assess-558

ment of skill in Warn-on-Forecast guidance, comparing performance across different cases and559

system configurations, and providing information on specific forecast errors through examination560

of object diagnostic properties. However, there are many limitations to the object-based approach561

for short-term, ensemble forecasts of thunderstorm hazards. Object-based verification is highly562

customizable, with user-defined thresholds required for object identification and matching (Davis563

et al. 2006a). While this flexibility permits application of object-based verification to a wide va-564

riety of forecast problems, care must be taken to ensure that appropriate thresholds are used for565

consistent object identification and matching in different datasets, particularly for verification of566

rare events where small differences in the number of objects identified can dramatically alter ver-567

ification scores (Fig. 4). A second limitation to the object-based verification strategy employed568

here is that it only provides measures of skill for deterministic forecasts. While this is useful in569

establishing general baselines of skill for NEWS-e forecasts, it ignores a fundamental aspect of570

Warn-on-Forecast, that guidance should include a measure of uncertainty (Stensrud et al. 2009).571

Future work will incorporate additional metrics such as the Brier Skill Score and reliability dia-572

grams (Wilks 2011) in order to evaluate probabilistic NEWS-e guidance.573

The primary limitation of object-based verification specific to this study is limited sample di-574

versity across a relatively small number of available cases. Though large numbers of objects are575

identified, the ensemble and high frequency nature of NEWS-e forecasts results in strong cor-576

relation across forecast objects and variation in model and observation climatologies complicate577
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comparisons between 2016 and 2017 forecasts (Fig. 3). We expect that more regular generation578

of real time NEWS-e guidance, as is planned in 2018, will provide a larger sample size of cases579

and allow the baseline verification metrics presented here to be refined. Additionally, expanded580

computational resources will allow NEWS-e configuration testing across a large sample of prior581

cases, permitting hypothesis testing of forecast skill.582

A final note is that while object-based verification of thunderstorm guidance can provide useful583

bulk measures of forecast skill, it does not discriminate between the intensity of different thun-584

derstorms. For example, a marginally severe supercell producing a weak rotation track object will585

influence verification scores as much as an object associated with a violent tornado. Given the586

large numbers of thunderstorms typically present within the NEWS-e domain (e.g. Figs. 6, 14),587

changes in forecast quality for the most significant storms for a given case may be masked by588

changes to storms that produce limited impacts on life and property. Therefore, subjective verifi-589

cation remains indispensable for assessment of forecast skill in case studies of individual storms.590
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APPENDIX601

Verification Score Sensitivity to Object Identification and Matching Thresholds602

The highly configurable nature of object-based verification measures results in sensitivities of603

skill scores to user-defined thresholds. The impact of varying the user-defined intensity threshold604

for object identification and distance threshold for object matching is examined in Figs. A1 and605

A2.606

Variation of the intensity threshold for object identification does result in differences in the607

probability of detection and false alarm ratios, including changes in comparisons between scores608

for 2016 and 2017 forecasts (Fig. A1). However, the relative score changes between 2016 and609

2017 are attributable to changes in the frequency bias, which produce contrasting changes in POD610

and FAR that generally result in little net change to the critical success index. An exception is611

applying the 2016 intensity threshold to 2017 forecasts (Fig. A1 g–i). Using a lower value of612

updraft helicity for object identification results in approximately 60,000 more rotation track ob-613

jects in 2017 forecasts that are predominately false alarms, lowering the CSI scores throughout the614

forecast period. This sensitivity illustrates the importance of considering model climatologies to615

define representative object identification thresholds when comparing forecast systems with dif-616

ferent configurations. Small changes to the percentile threshold produces little relative variation617

in skill scores between 2016 and 2017 (Fig. A1 j–l) and composite reflectivity forecasts are rel-618

atively insensitive to changes in the object identification threshold (not shown), likely owing to619

small differences between the 2016 and 2017 climatologies below v50 dBZ (Fig. 3a).620

As would be expected, increasing the distance threshold for object matching results in corre-621

sponding decreases to the false alarm ratio and increases to the probability of detection and critical622

success index, particularly during the latter portions of the forecast period (Fig. A2). However,623
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there is little relative change between 2016 and 2017 forecasts in any verification metric for either624

composite reflectivity or rotation track forecasts.625
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TABLE 1. Physical parameterization options for NEWS-e forecast members during 2016 and 2017 (adapted

from Wheatley et al. 2015, their Table 2). Planetary boundary layer (PBL) options include the Yonsei University

(YSU), Mellor–Yamada–Janjic (MYJ), and Mellor–Yamada–Nakanashi–Niino (MYNN) schemes, which are

paired with either Dudhia and Rapid Radiative Transfer Model (RRTM) or the Rapid Radiative Transfer Model–

Global (RRTMG) parameterizations for shortwave and longwave radiation. All members utilize the RAP land

surface parameterization. Physics options for NEWS-e analysis members 19–36 are repeated (e.g. member 19

would have the same options as member 1).

850

851

852

853

854

855

856

Member PBL Shortwave Radiation Longwave Radiation

1 YSU Dudhia RRTM

2 YSU RRTMG RRTMG

3 MYJ Dudhia RRTM

4 MYJ RRTMG RRTMG

5 MYNN Dudhia RRTM

6 MYNN RRTMG RRTMG

7 YSU Dudhia RRTM

8 YSU RRTMG RRTMG

9 MYJ Dudhia RRTM

10 MYJ RRTMG RRTMG

11 MYNN Dudhia RRTM

12 MYNN RRTMG RRTMG

13 YSU Dudhia RRTM

14 YSU RRTMG RRTMG

15 MYJ Dudhia RRTM

16 MYJ RRTMG RRTMG

17 MYNN Dudhia RRTM

18 MYNN RRTMG RRTMG
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TABLE 2. Changes in NEWS-e system configuration between 2016 and 2017. Additional changes to the

HRRRE configuration are discussed in Section 2a.

857

858

2016 2017

WRF-ARW Version 3.6.1 3.8.1

Microphysics Thompson NSSL 2-Moment

Initial Conditions 3-hr HRRRE 1500 UTC Forecast (18 members) 1-hr HRRRE 1700 UTC Forecast (36 members)

Boundary Conditions HRRRE 1500 UTC Forecast (18 members) HRRRE 1500 UTC Forecast (9 members)

ASOS Assimilation No Hourly

Reflectivity Super Observations Nearest Neighbor Interpolation Cressman Objective Analysis
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TABLE 3. Summary of 2016 NEWS-e cases. For each date the available forecast period, satellite data avail-

ability, maximum Storm Prediction Center (SPC) risk from the 1630 outlook within the NEWS-e domain,

number of SPC archived tornado reports within the domain and forecast period, primary states effected, and

predominant storm mode are provided.

859

860

861

862

Date Forecast Period Satellite DA SPC Outlook Tornado Reports Primary States Affected Primary Storm Mode

23 December 2015 1900–0100 UTC No Moderate 24 AL, MS, TN Supercell

31 March 2016 1900–0130 UTC No Enhanced 24 AL, MS, TN Mixed

10 April 2016 1900–0300 UTC No Enhanced 0 OK, TX Linear

29 April 2016 1900–2330 UTC No Slight 0 AL, MS Linear

07 May 2016 1900–0300 UTC Yes Slight 15 CO, KS Mixed

08 May 2016 1900–0300 UTC Yes Enhanced 9 KS, OK Supercell

09 May 2016 1900–0100 UTC Yes Enhanced 16 AR, KS, OK Supercell

10 May 2016 1900–0300 UTC Yes Enhanced 19 IL, IN, KY Mixed

16 May 2016 1900–0300 UTC Yes Enhanced 10 OK, TX Linear

17 May 2016 1900–0300 UTC Yes Enhanced 1 TX Mixed

22 May 2016 1900–0300 UTC Yes Enhanced 38 KS, OK, TX Supercell

23 May 2016 1900–0300 UTC Yes Enhanced 5 OK, TX Supercell

24 May 2016 1900–0300 UTC Yes Enhanced 29 CO, KS, NE, OK Supercell

25 May 2016 1900–0300 UTC Yes Slight 14 KS, OK Supercell
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TABLE 4. Same as Table 3, except for 2017 cases. Asterisks indicate cases reproduced using Thompson

microphysics.

863

864

Date Forecast Period Satellite DA SPC Outlook Tornado Reports Primary States Affected Primary Storm Mode

01 May 2017 1900–0300 UTC Yes Enhanced 6 NY, PA Linear

02 May 2017 1900–0300 UTC Yes Slight 0 OK, TX Supercell

03 May 2017 1900–0300 UTC Yes Enhanced 2 LA, TX Linear

04 May 2017 1900–0300 UTC Yes Marginal 11 GA, SC Mixed

08 May 2017 1900–0300 UTC Yes Slight 1 CO, NM Supercell

09 May 2017* 1900–0300 UTC Yes Slight 6 NM, TX Supercell

11 May 2017 1900–0300 UTC Yes Enhanced 11 AR, LA, OK, TX Mixed

15 May 2017 1900–0300 UTC Yes Slight 0 CO, KS, NE Mixed

16 May 2017* 1900–0300 UTC Yes Moderate 26 KS, OK, TX Supercell

17 May 2017* 1900–0300 UTC Yes Enhanced 17 IA, IL, MN, WI Mixed

18 May 2017* 1900–0300 UTC Yes High 34 KS, OK, TX Supercell

19 May 2017 1900–0300 UTC Yes Enhanced 4 OK, TX Mixed

22 May 2017 1900–0300 UTC Yes Slight 0 NM, TX Supercell

23 May 2017* 1900–0300 UTC Yes Slight 0 TX Mixed

25 May 2017 1900–0300 UTC Yes Slight 2 CO, KS Supercell

26 May 2017 1900–0300 UTC Yes Slight 8 CO, KS Supercell

27 May 2017* 1900–0300 UTC Yes Moderate 8 AR, MO, OK Mixed

30 May 2017 1900–0300 UTC Yes Slight 1 MD, PA, VA Mixed
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FIG. 1. Example NEWS-e domain from 16 May 2017. The map shown corresponds to the HRRRE domain,

with the nested NEWS-e domain shaded green. WSR-88D sites whose data are assimilated into NEWS-e are

marked by blue dots with 150-km range rings drawn in gray.

949

950

951

46



FIG. 2. Schematic of NEWS-e system configuration for 2017.
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FIG. 3. Climatologies of forecast and verification datasets for (blue) 2016 cases and (orange) 2017 cases.

Scatter plots show the the 99.1st through 99.98th percentile values for (a) composite reflectivity (dBZ), (b) 2–5

km updraft helicity (m2 s−2) or azimuthal wind shear (AWS; s−1), and (c) 0–2 km updraft helicity or azimuthal

wind shear. Thresholds used for object identification are marked by horizontal and vertical lines.
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FIG. 4. Schematic depicting the object matching and verification process. Initial thresholded fields from the

(a) forecast from a single ensemble member and (d) observations are subjected to size and continuity quality

control thresholds prior to (b, e) object identification. (c) Forecast objects are matched to verification objects

according to prescribed spatiotemporal displacement thresholds with matched pairs being considered, hits, un-

matched forecast objects false alarms, and unmatched verification objects misses. This classification of objects

allows the (f) standard contingency table metrics probability of detection (POD), false alarm ratio (FAR), fre-

quency bias (BIAS), and critical success index (CSI) to be calculated to quantify forecast skill.
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a) b)

c) d)

DZ

DZ

DZ

DZ

FIG. 5. Time series of object-based (a) POD, (b) BIAS, (c) FAR, and (d) CSI for composite reflectivity

forecasts from (blue) 2016 and (orange) 2017. Individual ensemble members are plotted with thin lines and the

ensemble mean in bold. Ensemble means are calculated as the mean of verification metrics from each ensemble

member. The first and last 20 minutes of the forecast are masked so that only forecast times where objects could

be matched in time as well as space are considered. The total number of objects from each year is annotated.
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28 May 2017:  DZ Objects

28 May 2017:  DZ Objects

Init:  0100 UTC
Valid:  0230 UTC

Init:  0100 UTC
Valid:  0130 UTC

Init:  0100 UTC
Valid:  0200 UTC

Init:  0100 UTC
Valid:  0300 UTC

POD:  0.64
FAR:  0.10
BIAS:  0.71
CSI:  0.60

POD:  0.50
FAR:  0.19
BIAS:  0.64
CSI:  0.45

POD:  0.54
FAR:  0.30
BIAS:  0.78
CSI:  0.43

POD:  0.45
FAR:  0.23
BIAS:  0.59
CSI:  0.40

a) b)

c) d)

28 May 2017:  DZ Objects

28 May 2017:  DZ Objects

FIG. 6. Paintball plots of composite reflectivity objects (a) 30, (b) 60, (c) 90, and (d) 120 minutes into

forecasts initialized at 0100 UTC on 28 May 2017. Colored shading indicates NEWS-e member forecast objects,

with different colors assigned to each ensemble member, and dark gray shading observed objects. Regions

shaded light gray are less than 5 km or greater than 150 km from the nearest WSR-88D and not considered in

verification. Ensemble mean POD, FAR, BIAS, and CSI scores are provided in the upper right of each panel.
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a) b)DZ - 2016
60-min Fcst

Red:  >= Enhanced Risk, Supercell      
Orange:  >= Enhanced Risk, Mixed/Linear 
Green:  < Enhanced Risk, Supercell 
Blue:  < Enhanced Risk, Mixed/Linear

1:  1 May 2017 (46,260)            2:  2 May 2017 (6,475) 
3:  3 May 2017 (127,829)          4:  4 May 2017 (119,174) 
5:  8 May 2017 (48,759)            6:  9 May 2017 (37,090) 
7:  11 May 2017 (167,826)        8:  15 May 2017 (34,493) 
9:  16 May 2017 (52,804)        10:  17 May 2017 (86,670) 
11:  18 May 2017 (125,975)    12:  19 May 2017 (85,955) 
13:  22 May 2017 (36,883)      14:  23 May 2017 (41,555) 
15:  25 May 2017 (20,320)      16:  26 May 2017 (25,192) 
17:  27 May 2017 (71,739)      18:  30 May 2017 (19,237) 

1:  23 Dec. 2015 (56,091)        2:  31 March 2016 (106,441) 
3:  10 April 2016 (48,354)        4:  29 April 2016 (47,112) 
5:  7 May 2017 (34,930)          6:  8 May 2017 (47,973) 
7:  9 May 2017 (63,846)          8:  10 May 2017 (100,300) 
9:  16 May 2017 (19,275)       10:  17 May 2017 (49,351) 
11:  22 May 2017 (49,130)     12:  23 May 2017 (40,410) 
13:  24 May 2017 (54,816)     14:  25 May 2017 (11,008) 

DZ - 2017
60-min Fcst

FIG. 7. Performance diagrams (Roebber 2009) for 60-minute composite reflectivity forecasts from each case

during (a) 2016 and (b) 2017. Small circles indicate scores of individual ensemble members and large circles

represent the ensemble mean from each case. Cases are numbered according to the legend provided below each

plot and color coded according to maximum SPC risk in the NEWS-e domain and storm mode. The total number

of objects identified for each case is provided following each date in the legend.
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a) DZ 

2017:  77,569
2016:  56,298

b)

c)

d)

DZ 

DZ 

DZ 

2017:  76,658
2016:  64,314

2017:  79,714
2016:  62,820

2017:  77,071
2016:  57,166

2017:  74,968
2016:  44,420

2017:  69,452
2016:  37,601

2017:  62,602
2016:  28,367

FIG. 8. Time series of the object-based ensemble mean (a) POD, (b) FAR, (c) BIAS, and (d) CSI for composite

reflectivity forecasts aggregated for each forecast initialization hour between 2000 and 0200 UTC. Scores from

2017 (2016) forecasts are plotted in orange (blue) and every other forecast is plotted using lighter, dashed lines

in order to improve readability. As in Fig. 5, the first and last 20 minutes of each forecast are masked. The total

number of objects for each forecast initialization hour is annotated in panel a.
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1:  9 May 2017       
2:  16 May 2017       
3:  17 May 2017 
4:  18 May 2017   
5:  23 May 2017  
6:  27 May 2017     

DZ - 60-min Fcst

Orange:  NSSL 2-Moment, 2017 Climatology
Blue:  Thompson, 2016 Climatology

FIG. 9. As in Fig. 7 except for 60-minute composite reflectivity forecasts from (orange) 6 cases in 2017 and

(blue) the same 6 cases re-run using Thompson microphysics. The 2016 reflectivity climatology was used to

identify objects in the forecasts using Thompson microphysics.
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a) b)

c) d)

2-5 km UH

2-5 km UH 2-5 km UH

2-5 km UH

FIG. 10. As in Fig. 5 except for 2–5 km updraft helicity forecasts.
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a) b)

c) d)

0-2 km UH

0-2 km UH 0-2 km UH

0-2 km UH

FIG. 11. As in Fig. 5 except for 0–2 km updraft helicity forecasts.
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a) b)

Red:  >= Enhanced Risk, Supercell      
Orange:  >= Enhanced Risk, Mixed/Linear 
Green:  < Enhanced Risk, Supercell 
Blue:  < Enhanced Risk, Mixed/Linear

1:  1 May 2017 (5,495)            2:  2 May 2017 (2,773) 
3:  3 May 2017 (26,258)          4:  4 May 2017 (2,205) 
5:  8 May 2017 (18,958)          6:  9 May 2017 (17,619) 
7:  11 May 2017 (17,584)        8:  15 May 2017 (15,574) 
9:  16 May 2017 (19,752)       10:  17 May 2017 (11,021) 
11:  18 May 2017 (52,997)     12:  19 May 2017 (34,949) 
13:  22 May 2017 (17,466)     14:  23 May 2017 (20,331) 
15:  25 May 2017 (9,450)       16:  26 May 2017 (25,650) 
17:  27 May 2017 (50,810)     18:  30 May 2017 (3,200) 

1:  23 Dec. 2015 (9,871)          2:  31 March 2016 (24,640) 
3:  10 April 2016 (20,071)        4:  29 April 2016 (7,724) 
5:  7 May 2017 (13,612)          6:  8 May 2017 (15,790) 
7:  9 May 2017 (17,634)          8:  10 May 2017 (37,767) 
9:  16 May 2017 (10,389)       10:  17 May 2017 (17,777) 
11:  22 May 2017 (28,135)     12:  23 May 2017 (12,109) 
13:  24 May 2017 (31,173)     14:  25 May 2017 (4,306) 

2-5 km UH - 2016
60-min Fcst

2-5 km UH - 2017
60-min Fcst

FIG. 12. As in Fig. 7 except for 60-minute 2–5 km updraft helicity forecasts.
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1:  9 May 2017       
2:  16 May 2017       
3:  17 May 2017 
4:  18 May 2017   
5:  23 May 2017  
6:  27 May 2017     

2-5 km UH - 60-min Fcst

Orange:  NSSL 2-Moment, 2017 Climatology
Blue:  Thompson, 2017 Climatology

FIG. 13. As in Fig. 9 except for 2–5 km updraft helicity forecasts. Note that the 2017 2–5 km updraft helicity

climatology is used to define rotation track objects in both the Thompson and NSSL 2-Moment experiments.
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17 May 2017:  DZ Objects 17 May 2017:  2-5 km Rot Track Objects

23 May 2017:  2-5 km Rot Track Objects23 May 2017:  DZ Objects

Init:  2300 UTC
Valid:  0000 UTC

Init:  2300 UTC
Valid:  0000 UTC

Init:  2300 UTC
Valid:  0000 UTC

Init:  2300 UTC
Valid:  0000 UTC

POD:  0.84
FAR:  0.33
BIAS:  1.29
CSI:  0.59

POD:  0.30
FAR:  0.27
BIAS:  0.44
CSI:  0.26

POD:  0.91
FAR:  0.16
BIAS:  1.12
CSI:  0.77

POD:  1.00
FAR:  0.74
BIAS:  4.82
CSI:  0.25

a) b)

c) d)

FIG. 14. As in Fig. 6 except for (a, c) composite reflectivity and (b, d) rotation track objects 60-minutes

into forecasts initialized at 2300 UTC on (a, b) 17 May 2017 and (c, d) 23 May 2017. POD, FAR, BIAS, and

CSI scores for each forecast are provided in the lower left of each panel. Note that some forecast rotation track

objects in (d) are matched to observed objects at different times, resulting in a FAR less than 1.0 despite no

observed objects being present at the forecast time plotted.
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a) 2-5 km UH

2017:  30,406
2016:  23,559

b)

c)

d)

2017:  30,501
2016:  27,582

2017:  31,340
2016:  27,742

2017:  30,352
2016:  25,154

2017:  28,374
2016:  18,121

2017:  25,129
2016:  17,394

2017:  22,895
2016:  14,664

2-5 km UH

2-5 km UH

2-5 km UH

FIG. 15. As in Fig. 8 except for 2–5 km updraft helicity forecasts.
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a) DZ - 2016 
60-min Fcst

b) DZ - 2017
60-min Fcst

Matched Objects:  13,877
False Alarm Objects: 12,920

c) 2-5 km UH - 2016 
60-min Fcst

d)

Matched Objects:  24,247
False Alarm Objects: 17,966

Matched Objects:  5,026
False Alarm Objects: 6,544

Matched Objects:  6,828
False Alarm Objects: 9,476

2-5 km UH - 2017 
60-min Fcst

Matched Objects:  3,633
False Alarm Objects: 4,103

Matched Objects:  3,195
False Alarm Objects: 5,373

2-5 km UH - 2017:  Supercell
60-min Fcst

2-5 km UH - 2017:  Mixed/Linear 
60-min Fcst

e) f)

FIG. 16. Scatterplots of the parameter space of object area and maximum intensity for 60-minute NEWS-e

forecasts of (a, b) composite reflectivity (dBZ) and (c–f) 2–5 km updraft helicity (m2 s−2) during (a, c) 2016,

(b, d) 2017, and 2017 cases classified as (e) supercell or (f) mixed/linear mode. Matched objects are plotted in

orange and false alarm objects in blue with the total number of objects in each category listed in the lower right.

Kernel density estimate contours of the 95th, 97.5th, 99th, and 99.9th percentile values of each distribution are

overlain to illustrate differences between matched and false alarm distributions. Every third reflectivity object is

plotted to improve clarity.
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a) DZ 
30-min Fcst

b) 2-5 km UH 
30-min Fcst

2017:  27,391 Objects
2016:  17,464 Objects

2017:  7,329 Objects
2016:  5,725 Objects

FIG. 17. Scatterplots of the east-west and north-south centroid displacements (km) of matched objects for 30-

minute NEWS-e forecasts of (a) composite reflectivity (dBZ) and (b) 2–5 km updraft helicity (m2 s−2). Objects

from 2016 (2017) are plotted in blue (orange) and the total number of objects for each year is listed in the lower

left. Kernel density estimate contours are overlain as in Fig. 16 and every third reflectivity object is plotted to

improve clarity.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

99.95th percentile thresholds

2017 climatology thresholds

2016 climatology thresholds

99.9th percentile thresholds

Fig. A1. Time series of (a, d, g, j) probability of detection, (b, e, h, k) false alarm ratio, and (c, f, i, l) critical

success index for NEWS-e 2-5 km rotation track forecasts. The intensity threshold used to identify forecast

and observed rotation track objects is varied between the (a–c) 99.95th percentile from each year’s climatology

(same as Fig. 7), (d–f) the 99.95th percentile from the 2017 climatology only, (g–i) the 99.95th percentile from

the 2016 climatology only, and (j–l) the 99.9th percentile from each year’s climatology. Individual ensemble

member scores are plotted in thin orange (blue) lines with thick orange (blue) lines representing the ensemble

mean for 2017 (2016) NEWS-e forecasts.
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

40 km distance thresholds

30 km distance thresholds

20 km distance thresholds

60 km distance thresholds

Fig. A2. As in Fig. A1, except for the composite reflectivity objects and the maximum distance threshold for

object matching is varied from (a–c) 20 km, (d–f) 30 km, (g–i) 40 km (same as Fig. 5), and (j–l) 60 km.
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